News and Development

>News and Development> Reply

Title
Username
Password Combination of English and number with in 12 syllable
Password confirm
E-mail @
Title Quantum-chemical calculation of two-dimensional infrared spectra using localized-mode VSCF/VCI
Date 2024-04-08 Attachment , , , , , , , ,

Quantum-chemical calculation of two-dimensional infrared spectra using localized-mode VSCF/VCI


Brueggemann, J (Brueggemann, Julia)Wolter, M (Wolter, Mario)Jacob, CR (Jacob, Christoph R.)

Journal of Chemical Physics, 2022, Volume 157, 244107.

Computational protocols for the simulation of two-dimensional infrared (2D IR) spectroscopy usually rely on vibrational exciton models which require an empirical parameterization. Here, we present an efficient quantum-chemical protocol for predicting static 2D IR spectra that does not require any empirical parameters. For the calculation of anharmonic vibrational energy levels and transition dipole moments, we employ the localized-mode vibrational self-consistent field (L-VSCF)/vibrational configuration interaction (L-VCI) approach previously established for (linear) anharmonic theoretical vibrational spectroscopy [P. T. Panek and C. R. Jacob, ChemPhysChem 15, 3365-3377 (2014)]. We demonstrate that with an efficient expansion of the potential energy surface using anharmonic one-mode potentials and harmonic two-mode potentials, 2D IR spectra of metal carbonyl complexes and dipeptides can be predicted reliably. We further show how the close connection between L-VCI and vibrational exciton models can be exploited to extract the parameters of such models from those calculations. This provides a novel route to the fully quantum-chemical parameterization of vibrational exciton models for predicting 2D IR spectra. (c) 2022 Author(s).