News and Development

>News and Development> Reply

Title
Username
Password Combination of English and number with in 12 syllable
Password confirm
E-mail @
Title Effects of the Intramolecular Group and Solvent on Vibrational Coupling Modes and Strengths of Fermi Resonances in Aryl Azides: A DFT Study of 4-Azidotoluene and 4-Azido-N-phenylmaleimide
Date 2024-06-03 Attachment , , , , , , , ,

Effects of the Intramolecular Group and Solvent on Vibrational Coupling Modes and Strengths of Fermi Resonances in Aryl Azides: A DFT Study of 4-Azidotoluene and 4-Azido-N-phenylmaleimide


Perera, SM (Perera, Sathya M.)Aikawa, T (Aikawa, Tenyu)Shaner, SE (Shaner, Sarah E.)Moran, SD (Moran, Sean D.)Wang, LC (Wang, Lichang)

Journal of Physical Chemistry A, 2023, Volume 127, pp. 8911–8921.

The high transition dipole strength of the azide asymmetric stretch makes aryl azides good candidates as vibrational probes (VPs). However, aryl azides have complex absorption profiles due to Fermi resonances (FRs). Understanding the origin and the vibrational modes involved in FRs of aryl azides is critically important toward developing them as VPs for studies of protein structures and structural changes in response to their surroundings. As such, we studied vibrational couplings in 4-azidotoluene and 4-azido-N-phenylmaleimide in two solvents, N,N-dimethylacetamide and tetrahydrofuran, to explore the origin and the effects of intramolecular group and solvent on the FRs of aryl azides using density functional theory (DFT) calculations with the B3LYP functional and seven basis sets, 6-31G(d,p), 6-31+G(d,p), 6-31++G(d,p), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p), and 6-311++G(df,pd). Two combination bands consisting of the azide symmetric stretch and another mode form strong FRs with the azide asymmetric stretch for both molecules. The FR profile was altered by replacing the methyl group with maleimide. Solvents change the relative peak position and intensity more significantly for 4-azido-N-phenylmaleimide, which makes it a more sensitive VP. Furthermore, the DFT results indicate that a comparison among the results from different basis sets can be used as a means to predict more reliable vibrational spectra.