News and Development
>News and Development> View
Title | Reconstructing the infrared spectrum of a peptide from representative conformers of the full canonical ensemble | ||||
Date | 2024-04-12 | Attachment | , , , , , , , , | ||
Reconstructing the infrared spectrum of a peptide from representative conformers of the full canonical ensembleKotobi, A; Schwob, L; Vonbun-Feldbauer, GB; Rossi, M; Gasparotto, P; Feiler, C; Berden, G; Oomens, J; Oostenrijk, B; Scuderi, D; Bari, S; Meissner, RH Communications Chemistry, 2023, Volume 6, 46. Infrared spectroscopy is widely used for detailed insights into the three-dimensional molecular structure of biomolecules, however, the accurate description of experimental data by theoretical approaches remains challenging due to the dynamic processes that occur in biomolecules. Here, the authors report the accurate interpretation and reproduction of experimental infrared spectra of a model peptide in the gas phase using a combination of replica-exchange molecular dynamics simulations, machine learning and ab initio calculations based on representative structural conformers. Leucine enkephalin (LeuEnk), a biologically active endogenous opioid pentapeptide, has been under intense investigation because it is small enough to allow efficient use of sophisticated computational methods and large enough to provide insights into low-lying minima of its conformational space. Here, we reproduce and interpret experimental infrared (IR) spectra of this model peptide in gas phase using a combination of replica-exchange molecular dynamics simulations, machine learning, and ab initio calculations. In particular, we evaluate the possibility of averaging representative structural contributions to obtain an accurate computed spectrum that accounts for the corresponding canonical ensemble of the real experimental situation. Representative conformers are identified by partitioning the conformational phase space into subensembles of similar conformers. The IR contribution of each representative conformer is calculated from ab initio and weighted according to the population of each cluster. Convergence of the averaged IR signal is rationalized by merging contributions in a hierarchical clustering and the comparison to IR multiple photon dissociation experiments. The improvements achieved by decomposing clusters containing similar conformations into even smaller subensembles is strong evidence that a thorough assessment of the conformational landscape and the associated hydrogen bonding is a prerequisite for deciphering important fingerprints in experimental spectroscopic data. |